Tests for Positive Definiteness of a Matrix

In order to perform Cholesky Decomposition of a matrix, the matrix has to be a positive definite matrix. I have listed down a few simple methods to test the positive definiteness of a matrix.

Methods to test Positive Definiteness:

Remember that the term positive definiteness is valid only for symmetric matrices.

Test method 1: Existence of all Positive Pivots

For a matrix to be positive definite, all the pivots of the matrix should be positive. Hmm.. What is a pivot ?

Pivots:

Pivots are the first non-zero element in each row of a matrix that is in Row-Echelon form. Row-Echelon form of a matrix is the final resultant matrix of Gaussian Elimination technique.

In the following matrices, pivots are encircled.

Pivots

A positive definite matrix will have all positive pivots. Only the second matrix shown above is a positive definite matrix. Also, it is the only symmetric matrix.

Test method 2: Determinants of all upper-left sub-matrices are positive:

Determinant of all k \times k upper-left sub-matrices must be positive.

Break the matrix in to several sub matrices, by progressively taking k \times k upper-left elements. If the determinants of all the sub-matrices are positive, then the original matrix is positive definite.

Is the following matrix Positive Definite?

Equation 1 Tests for Positive Definiteness of a Matrix.png

Find the determinants of all possible k \times k upper sub-matrices.

Test method 3: All Positive Eigen Values

If all the Eigen values of the symmetric matrix are positive, then it is a positive definite matrix.

Is if following matrix Positive definite ?

Equation 3 Tests for Positive Definiteness of a Matrix new.png

Since, not all the Eigen Values are positive, the above matrix is NOT a positive definite matrix.

There exist several methods to determine positive definiteness of a matrix. The method listed here are simple and can be done manually for smaller matrices.

Rate this article: PoorBelow averageAverageGoodExcellent (26 votes, average: 3.12 out of 5)

External resource:

1) Online tool to generate Eigen Values and Eigen Vectors↗

Books by the author

Wireless Communication Systems in Matlab
Wireless Communication Systems in Matlab
Second Edition(PDF)

PoorBelow averageAverageGoodExcellent (180 votes, average: 3.62 out of 5)

Digital modulations using Python
Digital Modulations using Python
(PDF ebook)

PoorBelow averageAverageGoodExcellent (134 votes, average: 3.56 out of 5)

digital_modulations_using_matlab_book_cover
Digital Modulations using Matlab
(PDF ebook)

PoorBelow averageAverageGoodExcellent (136 votes, average: 3.63 out of 5)

Hand-picked Best books on Communication Engineering
Best books on Signal Processing

See also:

[1]An Introduction to Estimation Theory
[2]Bias of an Estimator
[3]Minimum Variance Unbiased Estimators (MVUE)
[4]Maximum Likelihood Estimation
[5]Maximum Likelihood Decoding
[6]Probability and Random Process
[7]Likelihood Function and Maximum Likelihood Estimation (MLE)
[8]Score, Fisher Information and Estimator Sensitivity
[9]Introduction to Cramer Rao Lower Bound (CRLB)
[10]Cramer Rao Lower Bound for Scalar Parameter Estimation
[11]Applying Cramer Rao Lower Bound (CRLB) to find a Minimum Variance Unbiased Estimator (MVUE)
[12]Efficient Estimators and CRLB
[13]Cramer Rao Lower Bound for Phase Estimation
[14]Normalized CRLB - an alternate form of CRLB and its relation to estimator sensitivity
[15]Cramer Rao Lower Bound (CRLB) for Vector Parameter Estimation
[16]The Mean Square Error – Why do we use it for estimation problems
[17]How to estimate unknown parameters using Ordinary Least Squares (OLS)
[18]Essential Preliminary Matrix Algebra for Signal Processing
[19]Why Cholesky Decomposition ? A sample case:
[20]Tests for Positive Definiteness of a Matrix
[21]Solving a Triangular Matrix using Forward & Backward Substitution
[22]Cholesky Factorization - Matlab and Python
[23]LTI system models for random signals – AR, MA and ARMA models
[24]Comparing AR and ARMA model - minimization of squared error
[25]Yule Walker Estimation
[26]AutoCorrelation (Correlogram) and persistence – Time series analysis
[27]Linear Models - Least Squares Estimator (LSE)
[28]Best Linear Unbiased Estimator (BLUE)

Post your valuable comments !!!