Tests for Positive Definiteness of a Matrix

In order to perform Cholesky Decomposition of a matrix, the matrix has to be a positive definite matrix. I have listed down a few simple methods to test the positive definiteness of a matrix.

Methods to test Positive Definiteness:

Remember that the term positive definiteness is valid only for symmetric matrices.

Test method 1: Existence of all Positive Pivots

For a matrix to be positive definite, all the pivots of the matrix should be positive. Hmm.. What is a pivot ?

Pivots:

Pivots are the first non-zero element in each row of a matrix that is in Row-Echelon form. Row-Echelon form of a matrix is the final resultant matrix of Gaussian Elimination technique.

In the following matrices, pivots are encircled.

A positive definite matrix will have all positive pivots. Only the second matrix shown above is a positive definite matrix. Also, it is the only symmetric matrix.

Test method 2: Determinants of all upper-left sub-matrices are positive:

Determinant of all upper-left sub-matrices must be positive.

Break the matrix in to several sub matrices, by progressively taking upper-left elements. If the determinants of all the sub-matrices are positive, then the original matrix is positive definite.

Is the following matrix Positive Definite?

Find the determinants of all possible upper sub-matrices.

Test method 3: All Positive Eigen Values

If all the Eigen values of the symmetric matrix are positive, then it is a positive definite matrix.

Is if following matrix Positive definite ?

Since, not all the Eigen Values are positive, the above matrix is NOT a positive definite matrix.

There exist several methods to determine positive definiteness of a matrix. The method listed here are simple and can be done manually for smaller matrices.

Rate this article: Note: There is a rating embedded within this post, please visit this post to rate it.

External resource:

1) Online tool to generate Eigen Values and Eigen Vectors↗

Books by the author


Wireless Communication Systems in Matlab
Second Edition(PDF)

Note: There is a rating embedded within this post, please visit this post to rate it.
Checkout Added to cart

Digital Modulations using Python
(PDF ebook)

Note: There is a rating embedded within this post, please visit this post to rate it.
Checkout Added to cart

Digital Modulations using Matlab
(PDF ebook)

Note: There is a rating embedded within this post, please visit this post to rate it.
Checkout Added to cart
Hand-picked Best books on Communication Engineering
Best books on Signal Processing

See also:

[1]An Introduction to Estimation Theory
[2]Bias of an Estimator
[3]Minimum Variance Unbiased Estimators (MVUE)
[4]Maximum Likelihood Estimation
[5]Maximum Likelihood Decoding
[6]Probability and Random Process
[7]Likelihood Function and Maximum Likelihood Estimation (MLE)
[8]Score, Fisher Information and Estimator Sensitivity
[9]Introduction to Cramer Rao Lower Bound (CRLB)
[10]Cramer Rao Lower Bound for Scalar Parameter Estimation
[11]Applying Cramer Rao Lower Bound (CRLB) to find a Minimum Variance Unbiased Estimator (MVUE)
[12]Efficient Estimators and CRLB
[13]Cramer Rao Lower Bound for Phase Estimation
[14]Normalized CRLB - an alternate form of CRLB and its relation to estimator sensitivity
[15]Cramer Rao Lower Bound (CRLB) for Vector Parameter Estimation
[16]The Mean Square Error – Why do we use it for estimation problems
[17]How to estimate unknown parameters using Ordinary Least Squares (OLS)
[18]Essential Preliminary Matrix Algebra for Signal Processing
[19]Why Cholesky Decomposition ? A sample case:
[20]Tests for Positive Definiteness of a Matrix
[21]Solving a Triangular Matrix using Forward & Backward Substitution
[22]Cholesky Factorization - Matlab and Python
[23]LTI system models for random signals – AR, MA and ARMA models
[24]Comparing AR and ARMA model - minimization of squared error
[25]Yule Walker Estimation
[26]AutoCorrelation (Correlogram) and persistence – Time series analysis
[27]Linear Models - Least Squares Estimator (LSE)
[28]Best Linear Unbiased Estimator (BLUE)

Published by

Mathuranathan

Mathuranathan Viswanathan, is an author @ gaussianwaves.com that has garnered worldwide readership. He is a masters in communication engineering and has 12 years of technical expertise in channel modeling and has worked in various technologies ranging from read channel, OFDM, MIMO, 3GPP PHY layer, Data Science & Machine learning.

Post your valuable comments !!!Cancel reply