Check Positive Definite Matrix in Matlab

Note: There is a rating embedded within this post, please visit this post to rate it.
It is often required to check if a given matrix is positive definite or not. Three methods to check the positive definiteness of a matrix were discussed in a previous article .

I will utilize the test method 2 to implement a small matlab code to check if a matrix is positive definite.The test method 2 relies on the fact that for a positive definite matrix, the determinants of all upper-left sub-matrices are positive.The following Matlab code uses an inbuilt Matlab function -‘det’ – which gives the determinant of an input matrix.

Furthermore, the successive upper \(k \times k\) sub-matrices are got by using the following notation

subA=A(1:i,1:i)

I will explain how this notation works to give the required sub-matrices.

Consider a sample matrix given below

$$ \begin{bmatrix} 1 & 2 & 3\\ 4 & 5 & 6\\ 7 & 8 & 9 \end{bmatrix}$$

The sub-matrices for the various combinations for row and column values for the above mentioned code snippet is given below

Notation Submatrix Comment
subA=A(1:1,1:1) \( \begin{bmatrix} 1 \end{bmatrix}\) Select elements from 1st row-1st column to 1st row-1st column
subA=A(1:2,1:2) \( \begin{bmatrix} 1 & 2 \\ 4 & 5 \end{bmatrix}\) Select elements from 1st row-1st column to 2nd row-2nd column
subA=A(1:3,1:3) \( \begin{bmatrix} 1 & 2 & 3\\ 4 & 5 & 6 \\ 7 & 8 & 9\end{bmatrix}\) Select elements from 1st row-1st column to 3rd row-3rd column
subA=A(1:3,1:2) \( \begin{bmatrix} 1 & 2 \\ 4 & 5 \\ 7 & 8 \end{bmatrix}\) Select elements from 1st row-1st column to 3rd row-2nd column

Matlab Code to test if a matrix is positive definite:

function x=isPositiveDefinite(A)
%Function to check whether a given matrix A is positive definite
%Author Mathuranathan for https://www.gaussianwaves.com
%Returns x=1, if the input matrix is positive definite
%Returns x=0, if the input matrix is not positive definite
%Throws error if the input matrix is not symmetric

    %Check if the matrix is symmetric
    [m,n]=size(A); 
    if m~=n,
        error('A is not Symmetric');
    end
    
    %Test for positive definiteness
    x=1; %Flag to check for positiveness
    for i=1:m
        subA=A(1:i,1:i); %Extract upper left kxk submatrix
        if(det(subA)<=0); %Check if the determinent of the kxk submatrix is +ve
            x=0;
            break;
        end
    end
    
    if x
        display('Given Matrix is Positive definite');
    else
        display('Given Matrix is NOT positive definite');
    end      
end

Sample run:

>> A=[1 2 3; 4 5 6; 7 8 9]
\(A =\begin{bmatrix}
1 & 2 & 3\\
4 & 5 & 6\\
7 & 8 & 9\end{bmatrix}\)
>> x=isPositiveDefinite(A)
Given Matrix is NOT positive definite
x = 0
------------------------------------------
>> A=[25 15 -5; 15 18 0;-5 0 11]
\(A =\begin{bmatrix}
25 & 15 & -5\\
15 & 18 & 0\\
-5 & 0 & 11 \end{bmatrix}\)
>> x=isPositiveDefinite(A)
Given Matrix is Positive definite
x = 1
------------------------------------------
>> A=[1 2 3; 4 5 6]
\(A =\begin{bmatrix}
1 & 2 & 3\\
4 & 5 & 6 \end{bmatrix}\)
>> x=isPositiveDefinite(A)
Error using isPositiveDefinite (line 11)
A is not Symmetric
------------------------------------------

Published by

Mathuranathan

Mathuranathan Viswanathan, is an author @ gaussianwaves.com that has garnered worldwide readership. He is a masters in communication engineering and has 12 years of technical expertise in channel modeling and has worked in various technologies ranging from read channel, OFDM, MIMO, 3GPP PHY layer, Data Science & Machine learning.

Post your valuable comments !!!Cancel reply