Key focus: Sinc pulse shaping of transmitted bits, offers minimum bandwidth and avoids intersymbol interference. Discuss its practical considerations & simulation.
Sinc pulse shaping
As suggested in the earlier post, the pulse shape that avoids ISI with the least amount of bandwidth is a sinc pulse of bandwidth
Following Matlab codes generate a sinc pulse with
This article is part of the book Wireless Communication Systems in Matlab, ISBN: 978-1720114352 available in ebook (PDF) format (click here) and Paperback (hardcopy) format (click here).
Program 1: sincFunction.m: Function for generating sinc pulse
Program 2: Sinc pulse and its manifestation in frequency domain
Tsym=1; %Symbol duration
L=16; %oversampling rate, each symbol contains L samples
Nsym = 80; %filter span in symbol duration
Fs=L/Tsym; %sampling frequency
[p,t]=sincFunction(L,Nsym); %Sinc Pulse
subplot(1,2,1); t=t*Tsym; plot(t,p); title('Sinc pulse');
[fftVals,freqVals]=freqDomainView(p,Fs,'double'); %See Chapter 1
subplot(1,2,2);
plot(freqVals,abs(fftVals)/abs(fftVals(length(fftVals)/2+1)));
The main drawback of the sinc pulse is that it decays too slowly at the rate of
Figure 2 shows the one-sided frequency response of the sinc pulse that is truncated to various lengths. It is evident that the truncation of sinc pulse in time domain to
Rate this article: Note: There is a rating embedded within this post, please visit this post to rate it.
Books by the author
Wireless Communication Systems in Matlab Second Edition(PDF) Note: There is a rating embedded within this post, please visit this post to rate it. | Digital Modulations using Python (PDF ebook) Note: There is a rating embedded within this post, please visit this post to rate it. | Digital Modulations using Matlab (PDF ebook) Note: There is a rating embedded within this post, please visit this post to rate it. |
Hand-picked Best books on Communication Engineering Best books on Signal Processing |
Topics in this chapter
Pulse Shaping, Matched Filtering and Partial Response Signaling ● Introduction ● Nyquist Criterion for zero ISI ● Discrete-time model for a system with pulse shaping and matched filtering □ Rectangular pulse shaping □ Sinc pulse shaping □ Raised-cosine pulse shaping □ Square-root raised-cosine pulse shaping ● Eye Diagram ● Implementing a Matched Filter system with SRRC filtering □ Plotting the eye diagram □ Performance simulation ● Partial Response Signaling Models □ Impulse response and frequency response of PR signaling schemes ● Precoding □ Implementing a modulo-M precoder □ Simulation and results |
---|