Square-root raised-cosine pulse shaping

Let’s learn the equations and the filter model for simulating square root raised cosine (SRRC) pulse shaping. Before proceeding, I urge you to read about basics of pulse shaping in this article.

Combined response of two SRRC filters and frequency domain view of a single SRRC pulse
Figure 1: Combined response of two SRRC filters and frequency domain view of a single SRRC pulse

Raised-cosine pulse shaping filter is generally employed at the transmitter. Let X_{rc} (f) be the raised cosine filter’s frequency response. Assume that the channel’s amplitude response is flat, i.e, H_c(f)=1 and the channel noise is white. Then, the combined response of the transmit filter P(f) and receiver filter G(f) in frequency domain is given as

the combined response of the transmit and receive filters

If the receive filter is matched with the transmit filter, we have

equation 2 combined response and transmit and receive filter SRRC

Thus, the transmit and the receive filter take the form

equation 3 square root raised cosine filter

with G(f) = P^{\ast}(f), where T_0 is a nominal delay that is required to ensure the practical realizability of the filters. In time domain, a matched filter at the receiver is the mirrored copy of the impulse response of the transmit pulse shaping filter and is delayed by some time T_0. Thus the task of raised cosine filtering is equally split between the transmit and receive filters. This gives rise to square-root raised-cosine (SRRC) filters at the transmitter and receiver, whose equivalent impulse response is described as follows.

Impulse response equation for square root raised cosine (SRRC) filter

This article is part of the book
Wireless Communication Systems in Matlab (second edition), ISBN: 979-8648350779 available in ebook (PDF) format and Paperback (hardcopy) format.

The roll-of factor for the SRRC is denoted as \beta to distinguish it from that of the RC filter. A simple evaluation of the equation (4) produces singularities (undefined points) at p(t=0) and p(t=\pm \frac{T_{sym}}{4 \beta}). The value of the square root raised cosine pulse at these singularities can be obtained by applying L’Hostipital’s rule [1] and the values are

Value of raised cosine pulse at singularities

A function for generating SRRC pulse shape is given next. It is followed by a test code that plots the combined impulse response of transmit-receive SRRC filter combination and also plots the frequency domain view of a single SRRC pulse as shown in Figure 1

The combined impulse response matters, as we can identify that the combined response hits zero at symbol sampling instants. This indicates that the job of ISI cancellation is split between transmitter and receiver filters. Note that the combined impulse response of two SRRC filters is same as the impulse response of the RC filter.

Program 1: srrcFunction.m: Function for generating square-root raised-cosine pulse (click here)

Matlab code for Program 1 is available is available in the book Wireless Communication Systems in Matlab (click here).

Program 2: test_SRRCPulse.m: Square-root raised-cosine pulse characteristics

Tsym=1; %Symbol duration in seconds
L=10; % oversampling rate, each symbol contains L samples
Nsym = 80; %filter span in symbol durations
betas=[0 0.22 0.5 1];%root raised-cosine roll-off factors
Fs=L/Tsym;%sampling frequency
lineColors=['b','r','g','k','c']; i=1;legendString=cell(1,4);
for beta=betas %loop for various alpha values
	[srrcPulseAtTx,t]=srrcFunction(beta,L,Nsym); %SRRC Filter at Tx
	srrcPulseAtRx = srrcPulseAtTx;%Using the same filter at Rx
	%Combined response matters as it hits 0 at desired sampling instants
	combinedResponse = conv(srrcPulseAtTx,srrcPulseAtRx,'same');
	
	subplot(1,2,1); t=Tsym*t; %translate time base & normalize reponse
	plot(t,combinedResponse/max(combinedResponse),lineColors(i));
	hold on;
	
	%See Chapter 1 for the function 'freqDomainView'
	[vals,F]=freqDomainView(srrcPulseAtTx,Fs,'double');
	subplot(1,2,2);
	plot(F,abs(vals)/abs(vals(length(vals)/2+1)),lineColors(i));
	hold on;legendString{i}=strcat('\beta =',num2str(beta) );i=i+1;
end
subplot(1,2,1);
title('Combined response of SRRC filters'); legend(legendString);
subplot(1,2,2);
title('Frequency response (at Tx/Rx only)');legend(legendString);

References

Rate this article: PoorBelow averageAverageGoodExcellent (5 votes, average: 3.40 out of 5)

Topics in this chapter

Pulse Shaping, Matched Filtering and Partial Response Signaling
● Introduction
● Nyquist Criterion for zero ISI
● Discrete-time model for a system with pulse shaping and matched filtering
 □ Rectangular pulse shaping
 □ Sinc pulse shaping
 □ Raised-cosine pulse shaping
 □ Square-root raised-cosine pulse shaping
● Eye Diagram
● Implementing a Matched Filter system with SRRC filtering
 □ Plotting the eye diagram
 □ Performance simulation
● Partial Response Signaling Models
 □ Impulse response and frequency response of PR signaling schemes
● Precoding
 □ Implementing a modulo-M precoder
 □ Simulation and results

Books by the author

Wireless Communication Systems in Matlab
Wireless Communication Systems in Matlab
Second Edition(PDF)

PoorBelow averageAverageGoodExcellent (180 votes, average: 3.62 out of 5)

Digital modulations using Python
Digital Modulations using Python
(PDF ebook)

PoorBelow averageAverageGoodExcellent (134 votes, average: 3.56 out of 5)

digital_modulations_using_matlab_book_cover
Digital Modulations using Matlab
(PDF ebook)

PoorBelow averageAverageGoodExcellent (136 votes, average: 3.63 out of 5)

Hand-picked Best books on Communication Engineering
Best books on Signal Processing

Post your valuable comments !!!