Bernoulli random variable is a discrete random variable with two outcomes – success and failure, with probabilities p and (1-p). It is a good model for binary data generators and also for modeling bit error patterns in the received binary data when a communication channel introduces random errors.
To generate a Bernoulli random variable X, in which the probability of success P(X=1)=p for some p ϵ (0,1), the discrete inverse transform method [1] can be applied on the continuous uniform random variable U(0,1) using the steps below.
● Generate uniform random number U in the interval (0,1)
● If U<p, set X=1, else set X=0
#bernoulliRV.m: Generating Bernoulli random number with success probability p
function X = bernoulliRV(L,p)
%Generate Bernoulli random number with success probability p
%L is the length of the sequence generated
U = rand(1,L); %continuous uniform random numbers in (0,1)
X = (U<p); end
Verifying law of large numbers
In probability theory, the law of large numbers is a theorem that involves repeating an experiment for a large number of times. According to this law, as the number of trials tend to become large, the average result obtained will be close to the expected value.
This article is part of the book |
Let’s toss a coin with probability of heads
#lawOfLargeNumbers.m: Law of large numbers illustrated using Bernoulli random variable
n=1000; %number of trials
p=0.7; %probability of success
X=bernoulliRV(n,p); %Bernoulli random variable
y_sum=sum(triu(repmat(X,[prod(size(X)) 1])')); %cumulative sum
avg = y_sum./(1:1:n); %average of results
plot(1:1:n,avg,'.'); hold on;
xlabel('Trial #'); ylabel('Probability of Heads');
plot(p*ones(1,n),'r'); legend('average','expected');
Refer the book Wireless Communication Systems in Matlab for full Matlab code
The resulting plot (Figure 1) shows that as the number of trial increases, the average approaches the expected value 0.7.
Rate this article: Note: There is a rating embedded within this post, please visit this post to rate it.
References
[1] L. Devroye, Non-Uniform Random Variate Generation, Springer-Verlag, New York, 1986.↗
Books by the author
Topics in this chapter
Random Variables - Simulating Probabilistic Systems ● Introduction ● Plotting the estimated PDF ● Univariate random variables □ Uniform random variable □ Bernoulli random variable □ Binomial random variable □ Exponential random variable □ Poisson process □ Gaussian random variable □ Chi-squared random variable □ Non-central Chi-Squared random variable □ Chi distributed random variable □ Rayleigh random variable □ Ricean random variable □ Nakagami-m distributed random variable ● Central limit theorem - a demonstration ● Generating correlated random variables □ Generating two sequences of correlated random variables □ Generating multiple sequences of correlated random variables using Cholesky decomposition ● Generating correlated Gaussian sequences □ Spectral factorization method □ Auto-Regressive (AR) model |
---|