What’s the need for GMSK
Minimum shift keying (MSK) is a special case of binary CPFSK with modulation index
Minimum shift keying (MSK) is a special case of binary CPFSK with modulation index
This article is part of the following books |
To satisfy such requirements, the MSK spectrum can be easily manipulated by using a pre-modulation low pass filter (LPF). The pre-modulation LPF should have the following properties and it is found that a Gaussian LPF will satisfy all of them [1]
- Sharp cut-off and narrow bandwidth – needed to suppress high frequency components.
- Lower overshoot in the impulse response – providing protection against excessive instantaneous frequency deviations.
- Preservation of filter output pulse area – thereby coherent detection can be applicable.
Pre-modulation Gaussian low pass filter
Gaussian Minimum Shift Keying (GMSK) is a modified MSK modulation technique, where the spectrum of MSK is manipulated by passing the rectangular shaped information pulses through a Gaussian LPF prior to the frequency modulation of the carrier. A typical Gaussian LPF, used in GMSK modulation standards, is defined by the zero-mean Gaussian (bell-shaped) impulse response.
The parameter
where,
It is important to note the distinction between the two equations – (1) and (2). The equation for
The aim of using GMSK modulation is to have a controlled MSK spectrum. Effectively, a variable parameter called
The Matlab function to implement the Gaussian LPF’s impulse response (equation (1)), is given in the book (For Python implementation, refer this book). The Gaussian impulse response is of infinite duration and hence in digital implementations it has to be defined for a finite interval, as dictated by the function argument
It is also necessary to normalize the filter coefficients of the computed LPF as
Based on the gaussianLPF Matlab function, given in the book (For Python implementation, refer this book), we can compute and plot the impulse response
Rate this article: Note: There is a rating embedded within this post, please visit this post to rate it.
References
[1] Murota, K. and Hirade, K., GMSK Modulation for Digital Mobile Radio Telephony, IEEE Transactions on Communications, vol COM-29, No. 7. pp. 1044-1050, July 1981.↗
[2] Marvin K. Simon, Bandwidth-Efficient Digital Modulation with Application to Deep Space Communications, JPL Deep Space Communications and Navigation Series,Wiley-Interscience, Hoboken, New Jersey, 2003, ISBN 0-471-44536-3,pp-57.↗
Books by the author
Wireless Communication Systems in Matlab Second Edition(PDF) Note: There is a rating embedded within this post, please visit this post to rate it. | Digital Modulations using Python (PDF ebook) Note: There is a rating embedded within this post, please visit this post to rate it. | Digital Modulations using Matlab (PDF ebook) Note: There is a rating embedded within this post, please visit this post to rate it. |
Hand-picked Best books on Communication Engineering Best books on Signal Processing |
Topics in this chapter
Digital Modulators and Demodulators - Passband Simulation Models ● Introduction ● Binary Phase Shift Keying (BPSK) □ BPSK transmitter □ BPSK receiver □ End-to-end simulation ● Coherent detection of Differentially Encoded BPSK (DEBPSK) ● Differential BPSK (D-BPSK) □ Sub-optimum receiver for DBPSK □ Optimum noncoherent receiver for DBPSK ● Quadrature Phase Shift Keying (QPSK) □ QPSK transmitter □ QPSK receiver □ Performance simulation over AWGN ● Offset QPSK (O-QPSK) ● π/p=4-DQPSK ● Continuous Phase Modulation (CPM) □ Motivation behind CPM □ Continuous Phase Frequency Shift Keying (CPFSK) modulation □ Minimum Shift Keying (MSK) ● Investigating phase transition properties ● Power Spectral Density (PSD) plots ● Gaussian Minimum Shift Keying (GMSK) □ Pre-modulation Gaussian Low Pass Filter □ Quadrature implementation of GMSK modulator □ GMSK spectra □ GMSK demodulator □ Performance ● Frequency Shift Keying (FSK) □ Binary-FSK (BFSK) □ Orthogonality condition for non-coherent BFSK detection □ Orthogonality condition for coherent BFSK □ Modulator □ Coherent Demodulator □ Non-coherent Demodulator □ Performance simulation □ Power spectral density |
---|